August 25, 2025 | 22:41 GMT +7

  • Click to copy
Tuesday- 13:17, 02/05/2023

Scientists address global crop growing challenge

(VAN) A study led by University of Liverpool scientists has revealed a new way to improve crop growth, meeting a significant challenge to increase crop productivity in a changing climate with a growing population.
Synthetic engineering of α-carboxysomes into tobacco chloroplasts. a Schematic representation of the strategies of introducing carboxysomes and bicarbonate transporters into plant chloroplasts and eliminating chloroplastic CA to install a complete CCM for enhanced photosynthetic carbon fixation and plant yields. b Gene organization of α-carboxysome-expressing construct for tobacco chloroplast expression and the rbcL locus in the wild-type (WT) tobacco chloroplast genome. The α-carboxysome-expressing construct contains nine genes coding Rubisco (cbbL and cbbS), the linker protein CsoS2 (csoS2), carbonic anhydrase (csoSCA), shell hexamers (CsoS1A/B/C) and pentameric proteins (csoS4A/B). The genes were grouped into three operons driven by NtPrbcL (native promoter of rbcL in Nicotiana tabacum), CrPrrn (promoter of ribosomal RNA in Chlamydomonas reinhardtii), and CrPpsbA (promoter of psbA in C. reinhardtii), respectively. The Streptomycin/Spectinomycin adenylyltransferase gene (aadA) was driven by the tobacco plastid rRNA operon promoter (Prrn)73. Intercistronic Expression Elements (IEE), SD (Shine-Dalgarno) sequence, and Terminators (T) were listed. At, Os, and Cr indicate Arabidopsis thaliana, Oryza sativa, and C. reinhardtii, respectively. c, d Southern blot analysis (c) and seed germination (d) verified the successful transgene integration and homoplasmy of the three transplastomic plants obtained. The genomic DNA was digested by SpeI and hybridized with Digoxygenin-labeled probes of the promoter (Pp) and terminator (Pt) of rbcL in N. tabacum as indicated in (b). Seed germination was performed on Murashige and Skoog (MS) medium containing 500 mg L–1 spectinomycin. Source data are provided as a Source Data file. Credit: Nature Communications (2023). DOI: 10.1038/s41467-023-37490-0

Synthetic engineering of α-carboxysomes into tobacco chloroplasts. a Schematic representation of the strategies of introducing carboxysomes and bicarbonate transporters into plant chloroplasts and eliminating chloroplastic CA to install a complete CCM for enhanced photosynthetic carbon fixation and plant yields. b Gene organization of α-carboxysome-expressing construct for tobacco chloroplast expression and the rbcL locus in the wild-type (WT) tobacco chloroplast genome. The α-carboxysome-expressing construct contains nine genes coding Rubisco (cbbL and cbbS), the linker protein CsoS2 (csoS2), carbonic anhydrase (csoSCA), shell hexamers (CsoS1A/B/C) and pentameric proteins (csoS4A/B). The genes were grouped into three operons driven by NtPrbcL (native promoter of rbcL in Nicotiana tabacum), CrPrrn (promoter of ribosomal RNA in Chlamydomonas reinhardtii), and CrPpsbA (promoter of psbA in C. reinhardtii), respectively. The Streptomycin/Spectinomycin adenylyltransferase gene (aadA) was driven by the tobacco plastid rRNA operon promoter (Prrn)73. Intercistronic Expression Elements (IEE), SD (Shine-Dalgarno) sequence, and Terminators (T) were listed. AtOs, and Cr indicate Arabidopsis thalianaOryza sativa, and C. reinhardtii, respectively. cd Southern blot analysis (c) and seed germination (d) verified the successful transgene integration and homoplasmy of the three transplastomic plants obtained. The genomic DNA was digested by SpeI and hybridized with Digoxygenin-labeled probes of the promoter (Pp) and terminator (Pt) of rbcL in N. tabacum as indicated in (b). Seed germination was performed on Murashige and Skoog (MS) medium containing 500 mg L–1 spectinomycin. Source data are provided as a Source Data file. Credit: Nature Communications (2023). DOI: 10.1038/s41467-023-37490-0

With global levels of carbon dioxide (CO2) rising and the population set to reach almost 10 billion by 2050, Professor Luning Liu's team of researchers used synthetic biology and plant engineering techniques to improve photosynthesis, creating a template that can be used on a mass scale.

Photosynthesis is the process by which plants use atmospheric CO2 to create nutrients, which are crucial for growth and the global ecosystem. The newly published paper details how the team of scientists have improved Rubisco, a key enzyme present in photosynthesis that converts CO2 into energy. Usually Rubisco is inefficient and limits photosynthesis in major crops. However, many microorganisms including bacteria have evolved efficient systems, named "CO2-concentrating mechanisms," to improve Rubisco.

Inspired by nature, the team has successfully engineered a catalytically faster Rubisco taken from bacteria, into tobacco plant cells that undertake photosynthesis to support plant growth. The new method improves the Rubisco's stability and ability to convert CO2 into energy, allowing plants to further thrive. The changes to the enzyme also potentially increase the plants ability to absorb CO2, helping to support the global effort to address climate change.

Professor Luning Liu, Department of Biochemistry and Systems Biology, University of Liverpool said, "We are extremely excited with this breakthrough. Overall, our findings provide proof-of-concept for a route to improving crop development and production that can withstand changing climates and meet the growing food requirements of the world's expanding population."

This latest study follows the team's recent attempt to engineer the faster Rubisco from bacteria to support plant growth.

HD

(Phys.org)

Replacing maize with fruit peels in broiler diets could benefit poultry farmers

Replacing maize with fruit peels in broiler diets could benefit poultry farmers

(VAN) Researchers have discovered that replacing 50g/kg maize with a 50:50 mix of pineapple and orange peels could offer poultry producers a sustainable feed option.

Thai farmers fear price drop as India plans to release 20m tonnes of rice

Thai farmers fear price drop as India plans to release 20m tonnes of rice

(VAN) Global rice markets are bracing for turbulence after reports that India, the world’s largest rice exporter, is preparing to release around 20 million tonnes of stockpiled rice in September.

Famine confirmed for first time in Gaza

Famine confirmed for first time in Gaza

(VAN) FAO, UNICEF, WFP and WHO reiterate call for immediate ceasefire and unhindered humanitarian access to curb deaths from hunger and malnutrition.

Farmers across Europe struggle to adapt to the climate crisis

Farmers across Europe struggle to adapt to the climate crisis

(VAN) As wildfires rage in southern Europe and crop losses only set to increase in the coming years, producers are getting creative to beat the heat.

Avian influenza outbreak confirmed in commercial layer farm in Argentina

Avian influenza outbreak confirmed in commercial layer farm in Argentina

(VAN) A new outbreak of highly pathogenic avian influenza (HPAI) has been confirmed by Argentinian authorities at a layer farm in Buenos Aires, Argentina.

German Govt supports climate-smart rice farming in three states

German Govt supports climate-smart rice farming in three states

(VAN) The German Government has inaugurated the Carbon Offsetting Rice Emissions (CORE) Project to support 12,000 smallholder farmers in climate-smart rice production across Benue, Nasarawa, and Kano States.

Farmers in southwest France express growing concern over the ongoing heatwave

Farmers in southwest France express growing concern over the ongoing heatwave

(VAN) Orchardists, winegrowers and livestock farmers fear the negative impact of the current heatwave on their production.

Read more