July 14, 2025 | 11:37 GMT +7

  • Click to copy
Monday- 09:37, 28/08/2023

Microplastics discovered in body tissues of whales and dolphins spark concerns for human health too

(VAN) Plastic debris poses a particularly significant problem for marine mammals like whales, dolphins and seals, says this research scientist.
A Risso's dolphin entangled in fishing line and plastic bags. Photo: iStock

A Risso's dolphin entangled in fishing line and plastic bags. Photo: iStock

Marine mammals - animals including whales, dolphins, seals, sea lions, sea otters, dugongs and manatees - are threatened by an array of human activities. Species such as the North Atlantic right whale, Rice’s whale and Vaquita porpoise have been pushed to the brink of extinction.

Plastic debris poses a particularly significant problem. Marine mammals mistakenly eat items such as plastic bags, food wrappers, ropes and abandoned fishing gear, or they become entangled in plastic items including fishing nets. Both scenarios can lead to injury and, in many cases, death.

Autopsies carried out on 34 dolphins and whales stranded along the Greek coastline in 2019 found that nine of them (from four different species) had ingested plastic - and plastic consumption was identified as the cause of death in three of these animals.

And now, a recent US study has revealed that marine mammals face a more subtle plastic threat: Microplastics.

In the ocean, microplastics (tiny plastic particles measuring less than 5mm) commonly accumulate in an animal’s gills or digestive tract. However, the recent study found microplastics in various other tissues of a number of different whale, dolphin and seal species.

This suggests that microplastic particles are somehow able to move from one part of an animal’s body to another (or “translocate”). This finding may carry health implications not only for marine mammals, but humans too.

CONTAMINATED TISSUES

The researchers obtained tissue samples from 32 individual animals spanning 12 marine mammal species. These animals had either been stranded or harvested between 2000 and 2021.

Samples were taken from the animals’ blubber, melon (the fatty structure found in a whale’s forehead), acoustic fat pads (from the jaw), and lung tissue. These all serve vital functions such as enabling marine mammals to breathe, hear, locate prey and keep warm.

Analysis of the samples revealed that every single melon, acoustic fat pad and lung tissue sample contained microplastics, as did 64 per cent of blubber samples. The particles in the tissue samples ranged from very small (24 microns) to relatively large (1,387 microns).

TINY PARTICLES, BIG IMPACT

Research has provided us with some understanding of how microplastics may affect small marine animals. At Plymouth Marine Laboratory, we have shown that exposure to microplastic particles can affect feeding, growth and reproduction in animals that filter seawater or sediment for food.

Evidence of the impact of microplastics on larger animals is, by comparison, limited. This is because our understanding largely stems from observations of animals that are dead.

Nonetheless, studies have shown that microplastic fragments can cause the formation of scar tissue in the stomachs of seabirds. And there are also concerns that the chemicals present in marine plastic litter may leach into the tissues of marine mammals upon ingestion.

It’s therefore possible that the movement of microplastics from seawater and prey items into the tissues of marine mammals may affect their health. In the most severe scenario, the accumulation of these particles could lead to a loss of these tissues’ critical functions. However, further understanding of the implications of microplastic presence in body tissues is needed.

A CONCERN FOR HUMAN HEALTH

The fact that microplastics can accumulate in body tissues could also mean that more plastic particles are transferred further up the food chain to top predators like humans than is currently thought.

It’s generally believed that only very small microplastics (particles less than 100 microns) can move from the gut or respiratory system into the bloodstream. This would limit the amount of microplastics that are consumed when eating marine vertebrates.

But the US study has found the presence of larger microplastic particles in non-digestive tissues, suggesting this assumption might not hold true. Separate studies in the Persian Gulf and Black Sea have also revealed a variety of microplastic sizes present in non-digestive tissues of commercial fish.

Together, these findings could have implications for human health. Marine mammal meat and blubber are an important food source within certain Indigenous communities. And many people consume fish as part of their diets.

The risk of ingesting microplastics from a seafood meal is, at present, lower than that from drinking bottled water. But the prevalence of microplastics in the marine environment is rapidly increasing, and it is now evident that these particles can enter the bloodstream of animals and humans too. Research has found microplastic particles in human blood samples and in human placenta.

Laboratory studies have managed to highlight the generally negative impacts of microplastic exposure on small fish and invertebrates. However, we still lack a full understanding of the consequences of microplastic ingestion for larger mammals such as whales, dolphins, and humans.

What we are certain of is the escalating abundance of microplastics in the marine environment - our oceans are now filled with more than 170 trillion plastic particles. Efforts to stop the flow of plastic into the marine environment are urgently required.

HD

(CNA)

FAO Investment Days 2025 focuses on more and better agrifood jobs

FAO Investment Days 2025 focuses on more and better agrifood jobs

(VAN) Director-General urges bigger and deeper thinking to address youth employment challenge.

Illegal loggers profit from Brazil’s carbon credit projects

Illegal loggers profit from Brazil’s carbon credit projects

(VAN) How a system designed to protect the world’s biggest rainforest is funding businesses with a track record of illegal deforestation.

Cage-free countdown: UK retailers face 2025 deadline

Cage-free countdown: UK retailers face 2025 deadline

(VAN) Pressure is growing on companies to adopt the cage-free commitment for their egg supplies. Many food companies said their eggs would be from cage-free systems by the end of this year (2025).

Droughts worldwide pushing tens of millions towards starvation

Droughts worldwide pushing tens of millions towards starvation

(VAN) Water shortages hitting crops, energy and health as crisis gathers pace amid climate breakdown.

Green Climate Fund approves a record $300 million for FAO-designed projects in Papua New Guinea, Saint Lucia and the Sahel

Green Climate Fund approves a record $300 million for FAO-designed projects in Papua New Guinea, Saint Lucia and the Sahel

(VAN) The initiatives focus on forestry management, fisheries transformation and land restoration.

FAO urges collective action for food security, climate and development challenges in Africa.

FAO urges collective action for food security, climate and development challenges in Africa.

(VAN) Director-General QU Dongyu addresses the 6th AU-EU Agriculture Ministerial Conference.

Science meets soil: High-tech solutions elevate China's agricultural development

Science meets soil: High-tech solutions elevate China's agricultural development

(VAN) In the suburbs of Beijing, there is an agricultural center spanning over 150 hectares dedicated to research, demonstration, and application of high-tech and precision agriculture.

Read more